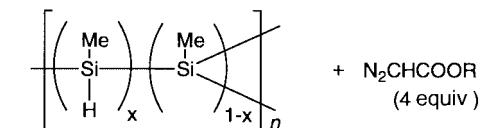


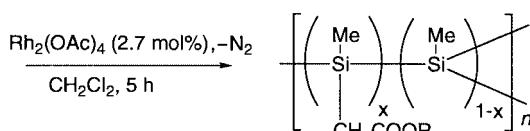
Synthesis and Unusual Spectral Properties of (Alkoxycarbonyl)methyl-Substituted Polysilanes

Yasuo Hatanaka,^{*†} Shingo Okada,[†] Shun-ya Onozawa,[†] Yohichi Suzuki,^{††} and Masato Tanaka^{*†, ††}


[†]National Institute of Advanced Industrial and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565

^{††}Department of Industrial Chemistry, College of Industrial Technology, Nihon University, Izumicho, Narashino, Chiba 275-8575

(Received March 22, 2001; CL-010261)

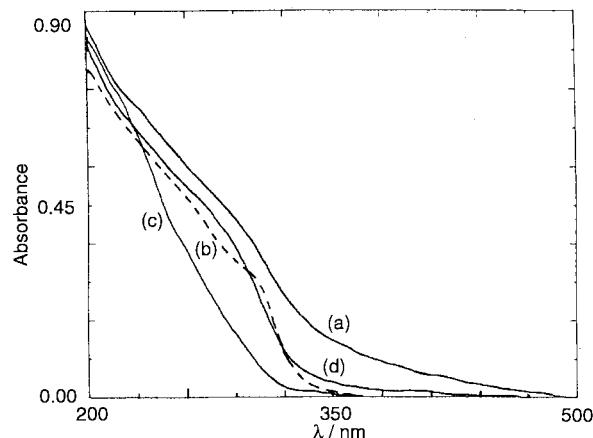

UV-vis spectra of partially branched polysilanes having (alkoxycarbonyl)methyl substituents exhibit unusual spectral properties such as absorption of very long wavelength and temperature- and solvent-dependent change of the spectra. These observations suggest that polar substituents effectively promote the σ -conjugation of the silicon backbones.

σ -Conjugated polymers such as polysilanes and polycarbosilanes are attracting attention as materials with unique electronic and optical properties.¹ The electronic structures of silicon polymers are extremely sensitive to the nature of the substituents on the silicon.¹ However, little is known about the electronic effects of polar substituents, because of the difficulty of the synthesis of polysilanes having polar functional groups.² Recently, we have reported that introduction of amide groups into oligosilanes leads to a remarkable change of the $\sigma_{\text{SiSi}} \rightarrow \sigma^*_{\text{SiSi}}$ excitation energies.³ This observation has given an impetus to the studies of highly functionalized polysilanes. We describe here the synthesis and spectral properties of polysilanes **2** having (alkoxycarbonyl)methyl substituents.

1a: $x = 0.86$, $M_W = 4800$, $M_W/M_N = 2.5$

1b: $x = 0.78$, $M_W = 2100$, $M_W/M_N = 5.0$

2a: $R = t\text{-Bu}$, $x = 0.86$, $M_W = 9970$, $M_W/M_N = 2.2$


2b: $R = \text{Et}$, $x = 0.78$, $M_W = 4100$, $M_W/M_N = 1.7$

Functionalized polysilane **2a** was synthesized by the Rh-catalyzed carbeneoid insertion⁴ into the Si-H bonds of partially branched poly(methylsilylene) **1a** containing 14% methylsilyne (MeSi) moieties ($M_W = 4800$, $M_W/M_N = 2.5$).⁵ To a solution of **1a** (486 mg) and $[(\text{CH}_3\text{CO}_2)_2\text{Rh}]_2$ (135 mg, 0.30 mmol) in dichloromethane (9.0 mL) was slowly added *tert*-butyl diazoacetate (6.3 g, 44 mmol) over a period of 5 h at room temperature. After concentration of the reaction mixture, resulting polymer was purified by GPC (toluene as eluent) to give 813 mg of partially branched polysilane **2a** having $\text{CH}_2\text{CO}_2t\text{-Bu}$ substituents as an air-stable yellow solid.⁶ Analysis of **2a** by GPC using polystyrene standards indicated that M_W was 9970 and polydispersity (M_W/M_N) was 2.2. Functionalized polysilane **2a** was soluble in

toluene, methanol and chloroform, and moderately soluble in isooctane. The ^{29}Si NMR spectrum of **2a** in C_6D_6 displayed two broad peaks at -35 ppm and -70 ppm, which are assignable to the silylene ($\text{MeSiCH}_2\text{CO}_2t\text{-Bu}$) and the silyne (MeSi) moieties, respectively.⁷ ^1H NMR spectroscopy also supported the polysilyne-polysilylene network structure containing 14% methylsilyne branching moieties, revealing that almost all the Si-H bonds of **1a** were converted to $\text{Si}-\text{CH}_2\text{CO}_2t\text{-Bu}$ moieties. Under the similar conditions, partially branched polysilane **2b** having $\text{CH}_2\text{CO}_2\text{Et}$ substituents ($M_W = 4100$; $M_W/M_N = 1.7$; 22% branching) was prepared from **1b** ($M_W = 2100$; $M_W/M_N = 5.0$) and ethyl diazoacetate.⁶

The solid state UV-vis spectra of a thin film of **2a** (4.5 μm thick) are shown in Figure 1, where the spectrum of a thin film of *n*-octyl-substituted polysilane with same degree of branching, $[(\text{CH}_3\text{Si})_{0.14}(n\text{-C}_8\text{H}_{17}\text{SiCH}_3)_{0.86}]_n$ **3** ($M_W = 7780$; $M_W/M_N = 2.0$), is also given for comparison (4.9 μm thick). The spectrum of **2a** at 25 °C exhibited a monotonously decreasing broad band and a shoulder peak around 300 nm, which is assignable to $\sigma_{\text{SiSi}} \rightarrow \sigma^*_{\text{SiSi}}$ transition of the linear silylene moieties.¹ Both spectra of **2a** and **3** display similar featureless broad bands, which are characteristic of branched polysilanes.⁸ However, functionalized polysilane **2a** showed broader absorption extending to the visible region (≤ 480 nm), while *n*-octyl-substituted polysilane **3** exhibited absorption in the near UV region (≤ 350 nm).⁹ The remarkable red-shift of the absorption edge of **2a** relative to **3** apparently indicates that the $\text{CH}_2\text{CO}_2t\text{-Bu}$ substituents in **2a** effectively promote the σ -conjugation and hence reduce the band gap (E_g) from 3.54 eV to 2.58 eV.¹⁰

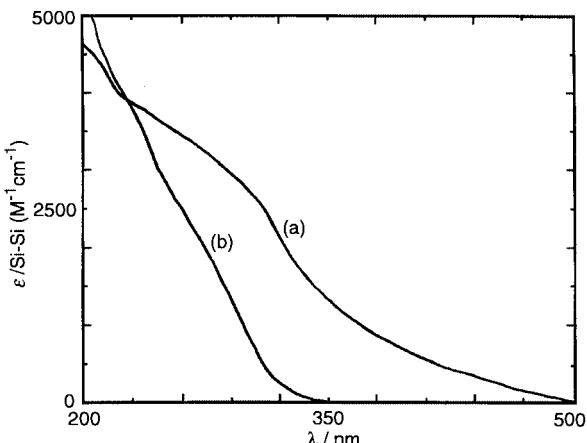

The spectrum of the thin film of **2** displayed a reversible temperature-dependent change. For example, when the film of

Figure 1. UV-vis spectra of (a) thin film of **2a** at 25 °C, (b) thin film of **3** at 25 °C, (c) thin film of **2a** at 100 °C, and (d) thin film of **2a**, heated at 100 °C and cooled at 25 °C for 2 h.

2a was heated at 100 °C for 15 min, the absorption edge significantly blue-shifted from 480 nm to 350 nm (Figure 1 (c)). This absorption, however, was not retained upon cooling at room temperature and the spectrum (a) slowly returned after 5 h via transient spectrum (d). The thermochromic behavior of **2a** can be explained by assuming that the blue-shift of the absorption edge at 100 °C is caused by thermally induced conformational change of the silyne moieties,¹¹ since the long-wavelength absorption above 400 nm is attributable to the silyne moieties.¹² This assumption can be sharply contrasted with the fact that conformationally rigid polysilynes substituted with alkyl groups do not display thermochromic change of the absorption spectra.¹³ Thus, it seems likely that the $\text{CH}_2\text{CO}_2t\text{-Bu}$ substituent exerts a strong influence on the conformation of the silyne moieties, although the group is bonded to the silylene moieties.¹⁴

The hypothesis is strengthened by the solvent-dependent change of the solution spectra of **2a**. In aqueous methanol solution, **2a** exhibited broad absorption extending to 485 nm, which is essentially similar to the solid-state spectrum (Figure 2 (a)). The intensities of the absorbance at 350 and 440 nm are 1289 and 352 $\text{M}^{-1}\text{cm}^{-1}$ per Si–Si bond, respectively. In contrast, in nonpolar solvent such as isoctane, the long-wavelength absorption completely disappeared (Figure 2 (b)).¹⁵ The solvatochromic change of the spectra strongly suggests that conformational change of the silyne moieties is responsible for the disappearance of the long-wavelength absorption, since the absorption above 400 nm possibly arises from the silyne moieties of **2a**.¹²

Figure 2. UV–vis spectra of (a) **2a** in aqueous methanol ($\text{MeOH}:\text{H}_2\text{O} = 500 : 1$) and (b) **2a** in isoctane.

Therefore, it is reasonable to consider that the polar $\text{CH}_2\text{CO}_2\text{R}$ substituents effectively promote the σ -conjugation along the silicon backbone through the conformational control of the backbone.¹⁶ The origin of this remarkable promotion of σ -conjugation by polar substituents is not clear. The polarizability of the silicon chains is supposed to increase with increasing σ -conjugation length along the silicon chains.¹⁷ Thus, stabilization of delocalized electronic state of the polysilanes can occur via electrostatic, dipole–dipole interaction between the polar ester groups and highly polarizable silicon chains, promoting the σ -conjugation in the solid state.¹⁷ The $\text{CH}_2\text{CO}_2\text{R}$ substituents in **2** would stabilize the backbone conformations that allow the effective electron delocalization, whereas conformational change at high temperatures leads to

the blue-shift of the absorption edge. The solvatochromic behavior of **2a** is also consistent with this proposal; in highly polar aqueous methanol, strong electrostatic interaction between the solvent molecules and polarizable silicon chains should greatly promote the σ -conjugation.

In conclusion, we have shown that functionalization of the partially branched polysilanes with ester groups effectively reduces the $\sigma_{\text{SiSi}} \rightarrow \sigma^*_{\text{SiSi}}$ excitation energies via the conformational control of the silicon backbones.

This work was partially supported by the Japan Science and Technology Corporation (JST) through the CREST (Core Research for Evolution Science and Technology) program.

References and Notes

- 1 R. D. Miller and J. Michl, *Chem. Rev.*, **89**, 1359 (1989).
- 2 Polysilanes are usually prepared by Wurtz-type polycondensation of dihalosilanes with sodium (ref 1).
- 3 I. El-Sayed, Y. Hatanaka, C. Muguruma, S. Shimada, M. Tanaka, N. Koga, and M. Mikami, *J. Am. Chem. Soc.*, **121**, 5095 (1999); C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, *J. Phys. Chem. A*, **104**, 4928 (2000); I. El-Sayed, Y. Hatanaka, S.-y. Onozawa, and M. Tanaka, *J. Am. Chem. Soc.*, **123**, 3597 (2001).
- 4 V. Bagheri, M. P. Doyle, J. Taunton, and E. E. Claxton, *J. Org. Chem.*, **53**, 6158 (1988).
- 5 The dehydrogenative coupling of methylsilane catalyzed by Cp_2ZrMe_2 (0.1 mol%) in cyclohexene for 430 h gave branched poly(methylsilylene) **1a** in 95% yield. The ^1H NMR spectrum revealed that **1a** contained 14% of methylsilyne moieties: Y. Mu and J. F. Harrod, in “Inorganic and Organometallic Oligomers and Polymers,” ed. by J. F. Harrod and R. M. Laine, Kluwer, Dordrecht, The Netherlands (1991), p. 23.
- 6 **2a**: ^1H NMR (300 MHz, C_6D_6) δ 0.60 (br, $\text{CH}_3\text{–Si}$), 1.40 (br, $(\text{CH}_3)_3\text{C}$), 2.30 (br, CH_2); ^{29}Si NMR (59.6 MHz, C_6D_6) δ –35 (br), –70 (br); IR (KBr) 2980, 1709, 1394, 1369, 1259, 1156, 1093, 857, 764 cm^{-1} . **2b**: ^1H NMR δ 0.65 (br, $\text{CH}\text{–Si}$), 1.1 (br, $\text{CH}_3\text{–CH}_2$), 2.45 (br, $\text{CH}_2\text{–Si}$), 4.02 (br, $\text{CH}_2\text{–O}$); ^{29}Si NMR δ –38 (br), –70 (br); IR (KBr) 2982, 2364, 1719, 1406, 1255, 1096, 772 cm^{-1} .
- 7 K. Furukawa, M. Fujino, and N. Matsumoto, *Macromolecules*, **23**, 3423 (1990).
- 8 P. A. Bianconi, F. C. Schilling, and T. W. Weidman, *Macromolecules*, **22**, 1697 (1989).
- 9 Thin film of **2b** exhibits similar broad absorption extending to 475 nm.
- 10 E_g was determined from the absorption band edge.
- 11 UV spectra of polysilanes are highly sensitive to conformational change of the silicon chains (ref 1).
- 12 Linear poly(dialkylsilylenes) do not exhibit UV absorption above 400 nm in both solid state and solution, while polysilynes show the absorption edge above 400 nm: R. D. Miller, D. Hofer, and J. Rabolt, *J. Am. Chem. Soc.*, **107**, 2171 (1985); P. Trefonas III, J. R. Damewood, Jr., and R. West, *Organometallics*, **4**, 1318 (1985); ref 8.
- 13 A. W. Cornelis, T. J. Cleij, L. W. Jenneskens, E. J. Vlietstra, G. P. Laan, M. P. Haas, and E. T. G. Lutz, *Macromolecules*, **29**, 7362 (1996).
- 14 Significant decrease in absorption around 320 nm at 100 °C is ascribed to conformational change of the silylene moieties.
- 15 The UV spectrum of **2a** in isoctane did not change when measured at –20 °C. Below –20 °C, the polymer precipitated.
- 16 Referee suggested that σ -conjugation between the silyne moieties can be promoted by conformational change of the silylene moieties.
- 17 K. S. Schweizer, *J. Chem. Phys.*, **85**, 1156 (1986).